Data Security in Cloud Architecture Based on Diffie Hellman and Elliptical Curve Cryptography
نویسندگان
چکیده
Technological advancements in cloud computing due to increased connectivity and exponentially proliferating data has resulted in migration towards cloud architecture. Cloud computing is technology where the users’ can use high end services in form of software that reside on different servers and access data from all over the world. Cloud storage enables users to access and store their data anywhere. It also ensures optimal usage of the available resources. With a promising technology like this, it certainly abdicates users’ privacy, putting new security threats towards the certitude of data in cloud. The security threats such as maintenance of data integrity, data hiding and data safety dominate our concerns when the issue of cloud security come up. The voluminous data and time consuming encryption calculations related to applying any encryption method have been proved as a hindrance in this field. In this research paper, we have contemplated a design for cloud architecture which ensures secured movement of data at client and server end. We have used the non breakability of Elliptic curve cryptography for data encryption and Diffie Hellman Key Exchange mechanism for connection establishment. The proposed encryption mechanism uses the combination of linear and elliptical cryptography methods. It has three security checkpoints: authentication, key generation and encryption of
منابع مشابه
Diffie-Hellman type key exchange protocols based on isogenies
In this paper, we propose some Diffie-Hellman type key exchange protocols using isogenies of elliptic curves. The first method which uses the endomorphism ring of an ordinary elliptic curve $ E $, is a straightforward generalization of elliptic curve Diffie-Hellman key exchange. The method uses commutativity of the endomorphism ring $ End(E) $. Then using dual isogenies, we propose...
متن کاملA NEW PROTOCOL MODEL FOR VERIFICATION OF PAYMENT ORDER INFORMATION INTEGRITY IN ONLINE E-PAYMENT SYSTEM USING ELLIPTIC CURVE DIFFIE-HELLMAN KEY AGREEMENT PROTOCOL
Two parties that conduct a business transaction through the internet do not see each other personally nor do they exchange any document neither any money hand-to-hand currency. Electronic payment is a way by which the two parties transfer the money through the internet. Therefore integrity of payment and order information of online purchase is an important concern. With online purchase the cust...
متن کاملTwo Level Encryption Decryption by Diffie – Hellman and Elliptic Curve Cryptography with Open ID scenario for Securing Cloud Environment
Cloud Computing offers services to end-users rather than a product, by sharing resources, software and other information under a pay per usage model, hence economic benefit is the key for Cloud in terms of capital and operational expenditure. It permits hosting of different types of applications such as business, scientific and social networking because it has key characteristics like multitena...
متن کاملIdentity-Based Proxy-Oriented Data Uploading and Remote Data Integrity Checking in Public Cloud.dvi
More and more clients would like to store their data to PCS (public cloud servers) along with the rapid development of cloud computing. New security problems have to be solved in order to help more clients process their data in public cloud. When the client is restricted to access PCS, he will delegate its proxy to process his data and upload them. On the other hand, remote data integrity check...
متن کاملBit Security of the Hyperelliptic Curves Diffie-Hellman Problem
The Diffie-Hellman problem as a cryptographic primitive plays an important role in modern cryptology. The Bit Security or Hard-Core Bits of Diffie-Hellman problem in arbitrary finite cyclic group is a long-standing open problem in cryptography. Until now, only few groups have been studied. Hyperelliptic curve cryptography is an alternative to elliptic curve cryptography. Due to the recent crypt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014